1 Appendix

We begin by giving new formulae for estimation of Fg;. Suppose we have a
biallelic marker in two populations in Hardy-Weinberg equilibrium. Choose the
variant allele, and suppose that the allele has population frequency pi,ps in
populations 1 and 2 respectively Set ¢; = 1 — p;. Then we can define Wright’s
Fy; as

Fs+ = N/D (1)

where
N = pi(e2—q1) +p2(q1 — @) (2)
D = piga+qp2=N+pigi +p2qe (3)

This is a definition of Fy;, a parameter measuring divergence at a given locus,
not a sample statistic. In this paper we are only interested in divergence mea-
sures of biallelic markers and the theory will always assume the populations are
homogeneous.

Suppose we have a set S of markers Ax(k = 1,...M). For marker k we define
now N and DI*! in the obvious way. We now define F/(S) = F; for the marker

set S by
N(S)

FS) = 39} @)
where
N = el )
M ik
p(s) = =P (6)

Given the form of equation (4) it is highly desirable to find unbiased estimators
of NI DIl ¢lse the bias will eventually dominate the estimate. Fix for now,
marker k, and suppose the population frequencies are p1, po for the variant allele,
and we observe allele counts a1, as for the variant allele, by, by for the reference
allele. Take n; = a; +b;, i = 1,2. N = N is defined as (p; —p2)2. A naive
estimator for N is

X = (al/nl — 0,2/712)2

We calculate the bias of X. Writing
X = ((a1/n1 = p1) = (az/ns — p2) + (p1 — p2))*
Then

E(X) = (p—p2)’+Var(ai/nilp1) + Var(as/na|ps) (7)
(pr — p2)” + pi(1 = p1)/n1 + pa(1 — pa)/na (8)



Define h1 = p1(1 — p1) (2h, is the heterozygosity at the marker for population
1). Then a natural estimator for hy is

a1(n1 - Cll)

i’\L =
! TL1(’I’L1 — ].)

(9)

It is easy to check that hy is unbiased. Similarly define hy for population 2,
with a corresponding estimator hs This is enough to show that:

N:(al/nl—ag/ng)Q—hAl/nl—hAg/nz (10)
is an unbiased estimator for N. Now
D =N+hy+ ho

which shows . o .
D=N+hy+hs (11)
is an unbiased estimator for D. . R
By the Lehmann-Scheffé theorem [1, Theorem 4.2.2] N and D are uniformly
minimum variance unbiased estimators. No longer fixing a marker and writing
N for our estimator of N, and so on, we see that a natural estimator for
F(S) is
P S ]Y[k]
¥, DI
Note that (12) does not give an unbiased estimator. However the law of large

numbers does imply that as sample size or the number of unlinked markers
become large we get an estimator that is asymptotically consistent.

(12)

Given our assumptions, our estimates of N*/| DI*] are exactly unbiased both
here and in the section below. Our formulae are different from those of Weir
and Cockerham [6], at least when population sample sizes differ.

1.1 Estimators in the presence of inbreeding

The estimators above are not correct if there is inbreeding. We continue to
assume that within a population there is no structure, but no longer assume
that the pair of chromosomes of each sample are unrelated. Thus we may have
excess homozygosity compared with Hardy-Weinberg equilibrium.

We extend our theory to this case. We give estimators of N, D that are unbiased,
without explicitly estimating the inbreeding coefficients. Let xq,x1, 22 be the
number of samples of population 1 with 0, 1, 2 copies of the variant allele. Let
Y0, Y1, Y2 be the corresponding numbers for population 2. Let

S = Xog+xT1+ X2

t = yot+uy1+uye



We will require that s,¢ > 1. In the notation of the previous section:

a; = x1+ 229
az = Y1+2y
ny = 28
ng = 2t

which will lead to estimators for N, D. In the presence of inbreeding, these
estimators are incorrect. Note however that if we pick alleles randomly from
each diplotype, then we will obtain valid unbiased estimators. We can of course
then obtain more efficient estimators by averaging over our choice of alleles.

Select an allele at random from each diploid genotype. Let u be the allele count
for population 1, and v be the count for population 2. From equation (10) we
want to compute expected values of:

X = (u/s—v/t)
=
R )
when our estimator for N is
N = E(X) — E(hy)/s — E(hy)/t (13)

For X, we see that u has mean x1/2 + xo and variance x1/4. Similarly v has
mean y1/2 + yo and variance y; /4. It follows that

2 2
E(X)<x1+ T2 Y1+ y2> T Y1

2s 2t

For E(h) we need the expected value of u(s — ). Standard binomial coefficient
identities show that

E(u(s —u)) = xox2 + (o + x2)x1/2 + 21(21 — 1) /4
Now it follows that:
~ I0$2+(I0+1‘2)I1/2+1’1(1}171)/4

B(h) = N (14)
s Yoy + (Yo +y2)ur /2 +yi(yr —1)/4
E(hy) = 1) (15)

We now can apply equation (13) to obtain N. For D we have, using D =
N + hy + hy the equation

D =N+ E(h1) + E(hy) (16)



These formulae are slightly different from those of [5] who correct for inbreeding
by directly estimating an inbreeding ‘fixation index’ (see below) and state that
their estimates of the numerator N and denominator D are only ‘approximately
unbiased’. (see their equation (8)). We now obtain, using estimates over many

markers -
fo 2V (17)
>, D

where N [k]7D[k] are the estimators above, robust to inbreeding, for marker
k. Just as before, the estimator of (17) is not unbiased but asymptotically
consistent as the number of unlinked markers becomes large.

The same ideas lead to a simple estimator of the inbreeding coefficient, p;. the
probability, in a sample from a population, that the two alleles at a locus are
identical by descent (IBD). For our case, with an assumed homogeneous popula-
tion, this is the same as Wright’s fixation index F'. (See [4, page 154]). Consider
population 1, with the same notation as above. Let H be the probability that
two alleles from an individual are heterozygous. Then

H = (1 —p])h

so that p;y = (h — H)/h. An unbiased estimator of H is

A~ xl
H="=
S

Thus we obtain a natural estimate of py:

p = 2= H) (18)

> h

where we sum over all SNPs in our data.

We have not yet worked out the theory, but it would appear that these estimators
of Fy have, in the absence of inbreeding, standard errors that are only a little
increased from the ‘optimal’ estimators using equations (10, 11).

2 f-statistics

We now discuss our f-statistics. f; is the simplest. We have 4 distinct popu-
lations W, X,Y, Z. An allele has population frequencies w, x, y, z respectively
We observe counts wg, wy of the allele and the complementary allele in a sample
from population W. Similarly we observe counts xg, x1; Y0, y1; 20, 21 We will
assume that the total count for each population is at least 2. Thus the natural
(naive) estimator of w is
o Wo
(wo 4 w1)



with similar definitions of z’,v’,2’. We wish to form unbiased estimates of
quantities such as (w — x)(y — z) which we term an f4-statistic. It is easy to see
that the naive estimate

fsW XY, Z) = (w' = 2)(y = &)

indeed is an unbiased estimator. Next suppose we want an estimator (fs-
statistic) for (w—x)(w—y) where w appears twice. Consider the naive estimator:
g = (w —2')(w' —y") Then we can write ¢ as

¢ = ((W—w)=(@" —2)+w-2)(v -w) =W —y) +(w-y)

This shows that the bias of ¢ is E(w’ — w)2. Let nyw = wg + wy be the total
allele count for W. Then
BEw —w)® = wd —w)
nw

Define hyy = w(l — w)
(2 hw is the heterozygosity at the marker for population W). Then a natural
estimator for Ay is hy = defined analogously to h;.

fW,X,Y) = (' —a')w' —y) = hw /nw
and f3 is an unbiased estimator of (w — x)(w — y). Similarly we can define

F2o(W,X) = (w' —a')(w' —2') — hw /nw — hx /nx

and show that fo(W, X) is an unbiased estimator of (w — z)°.

In applications we always wish to compute weighted sums of the f-statistics
across many markers. Unbiasedness is critical here ensuring convergence of
our average f-statistic to the average we would obtain by using the true allele
frequencies.

2.1 The Denominator

For f = Fy we have shown how to compute estimators for marker & N (K], DIF,
Our estimate F for F' is now simply:

P S ]Y[k]
¥ DI

For our f-statistics we have some choices. Our key idea is that the denominator
should not be population dependent. All our statistics are valid under any
reasonable choice, and what we did was the following.

We picked an outgroup (Hapmap Yoruba (YRI)), chosen as a ‘neutral’ pop-
ulation relative to the non-African populations studied here.



1. For our graph calculations in Figure 4 we wanted to mimic our Fj; esti-
mates closely, and the f-statistics are

53, N K]
S DIkl

where D ig pr(1 — pr), and py, is the empirical frequency of the variant
allele at marker ¢ in YRI. We require 0 < py < 1. Here, s is an arbitrary
scalar, unimportant for the analysis. Our f-statistics have no denomina-
tor and so are in some sense ‘dimensionless’. (Of course when we apply
a statistical test, such as a Z-score, the statistic is invariant to scaling).
The raw f-statistics are dependent on irrelevant quantities, such as the al-
lelic spectrum of ascertained markers, and thus are not comparable across
different data sets. We chose to scale fs to minimize the deviations from
Fy; by least squares, considering all pairs of populations in the analysis
being carried out. We then rescale f3, f4 using the same scale factor. This
makes all our quantities have units on the same scale as F; and make our
inferences interpretable as genetic drift. The only effect of the outgroup
here is to force our markers to be polymorphic in our YRI samples — this
is appropriate for our purposes, as ‘private’ alleles are not of interest here.

2. For our 4-population test we use the formula:
f= ZN[k]/ﬁ[k]
k

where DI*) is defined as above. This seemed to give more sensitivity. Note
that any weighting of the N'*! is statistically valid (here we use weights
1/DIF) at least if the weights are chosen only using outgroup data. We do
not yet understand what ‘optimal’ weights would be, in terms of statistical
power.

3. For our 3-population test where we are estimating (px — py)(px — pw)
the population X plays a distinguished role in this expression (and indeed
we are testing here the genetic history of X). We therefore set DI 0 be
an unbiased estimate of the heterozygosity at marker k for population X
(using (9). We use

D NIF]
S D
In all cases standard errors (and statistical significance) are estimated through

a weighted block jackknife [3, 2]. We use a block size of 5¢M.

2.2 Expected values of our f-statistics

We can calculate expected values, at least for simple demographies, involving



populations splits and admixture events (but not yet migrations occurring con-
tinuously in time). We give an illustration for our fs-statistics. Consider a
demography:

R

RN

A C B

Here, populations A’, B’ split from a root population R. C’ then was formed
by admixture in proportions « : 5 (8 = 1—«). Modern populations A, B, C' are
then formed by drift from A’, B’,C’. We want to calculate the expected value
of f3(C; A, B) That is we want

F3 = E(fc — fa, fc — fB)

where fa, fp, fo are allele frequencies in A, B, C respectively. We see by or-
thogonality of drifts that

Fy(C; A, B) = E(fer — fa, for = f) + E((for = fo)?).
(for is the allele frequency in C”) which we will write as
F3(C;A,B):Fg(C/;A,B)+F2(C,C/) (19)

Now, label alleles at a marker 0, 1. Then picking chromosomes from our popu-
lations independently we can write

F3(C"; A, B) = E(c —a)(c" — b))

where a,b,c, ¢ are alleles in populations A, B, C’. However ¢’ originated from
A’ with probability o and so on. Thus:

F3(C;A,B) = E(d —a)(d’" —b)

where a’,a” are independently picked from A’ and ¥',b"” from B’. The first 3
terms vanish Further

EWM —a)(d —b) = —E((a’ —)?)



and we obtain, using (19):
F3(C; A, B) = F5(C,C") — apFy(A', B) (20)

This last equation will have a negative right-hand side if there is little drift
between C,C’, « is not close to 0 or 1 and A’, B’ have substantially drifted.
Note that drift between A’ and A and also between B’ and B is immaterial
here.

It is worth commenting that this is very specifically a test for admixture of
population C' and complex demography in the history of A and B does not effect
the validity of the test. For example suppose we have two modern populations
A, B formed by recent admixture of populations Ay, By. In an obvious notation
A= ’U)le + wgBo, B = Ule + UQBO where

w1 +wy =v1+vy =1
Then by a similar argument to that above we find that
f3(C;A,B) = f3(CiwiAg + we By, v1Ag + v2By)
= w1 f2(C, Ag) +
wavs f2(C, By) +
(wrvz + wav1) f3(C; Ao, Bo)

and so f3(C; A, B) < 0 implies f3(C; Ag, By) < 0. The complex recent admix-
ture has weakened the test, but not removed the validity.

2.3 f; and f, statistics can be formed from f5.
From the identity
(@a=b)?=((c=a)=(c=b)* =(c—a) + (c=b)* =2(c—a)(c—b)

It follows that

2f3(C; A, B) = f2(C, A) + f2(C, B) — f2(A, B) (21)
Next, writing

d—b=c—-b—(c—d)
It follows that
fa(C, A; D, B) = f3(C; A, B) — f3(C; A, D) (22)

Also f4(E,A;D,B) = f4(C,A; D, B) — f4(C,E; D, B). This shows that given
knowledge of all the f, statistics, then all f3, f4 statistics can be computed. Con-
versely, fix a population C' and suppose we know f3(C; A, B) for all populations
A, B. and also f3(C, A) for every A. Then equation (21) shows that f2(A, B)
is determined for all A, B and therefore all f3, f4 statistics are determined.

In calculations it is convenient to pick a basis for the f-statistics. Two
natural bases are:



1. f2(A, B) for all A, B.
2. For a fixed C (usually an outgroup) f3(C; A, B) and f2(C, A) for all A, B.
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